UNCLASSIFIED

AD NUMBER

ADO004106

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; OCT 1952.
Other requests shall be referred to Office
of Naval Research, 800 North Quincy
Street, Arlington, VA 22217-5660.

AUTHORITY

ONR l1ltr, 26 Oct 1977

THIS PAGE IS UNCLASSIFIED




- AN T PR R B ”"—'-——"“ -‘f_—fwr‘. R :3:

:f eproduczd by
¢ Services Technical Informatmn ﬂgenc
 ACUMENT SERVICE ccum

!“lMl' Bnllll.ﬁl" DI"M 2, MIIO

L

TGS H i hiagl

|
5
i
=
2
—
5
=3

i)

it A




Best
- Available

Copy



CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 36

' g COMPARISON or NUMERICAL METHODS
fr.‘ou ANALYZING THE DYNAMIC RESPONSE
‘ or smucruass B

L

.b‘ .. BY )
N M. NEWMARK and 8. P. CHAN -

Yechnical Report -
: o
- OFHCE OF NAVAL RESEARCH
Contruct Néonr-71, Yaik Order V!
Project NR-044-183

UNIVERSITY OF I(LLINDIS
URBANA, ILLINOIS

Voo
(\\ [N
e - »



CCMPARISON OF NUMERICAL METHODS FOR ANALYSING THE

DYNAMIC RESPONSE OF STRUCTURES

oYy

8. P. Chen and N. M. Newnark

' ,vA ’l'echhical.Report_ :
of A Cooperative Research Project

- §ponsored by -
| THE CFFICE OF NAVAL RESEARCE
DEPARTMENT GF THE NAVY
and

THE DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF ILLIFOIS

Contract Néori-~7l, Task Order VT
Project KR-064-183%

3 2

N

——

VedrI- 7/ / 11 ™
. ~a00355e
Urbang), Illincis I
20 Octo -

Ul D

BSOS - .
VW ¥ e e  ma e h L emami i o v e e amay

.

e Gl 2 T




i. E
COMPARISON OF NUMERICAL METHCDS FOR ANALYZING THE
DYNAMIC RESPONSE OF STRUCTURES
|
CONTERTS
s Page
. INTRODUCTION I |
1.1 Summary . . .;, e L
1. GENERAL METEODS CF ANALYSIS |
2.1 Calculus of Finite Dirference Equations o ;';,. ;‘, . 3 ,} 6
2.?_‘Alg§bra of Matrices . . . .- o040 . . =.;'?;~_- s v 8 |
M. Anazzaxs'or AVATLABLE mscaw:quzs §
| 3. Acceleration Methods : |
5.1.1 Conetant Accelaratian Method SR . . ;{pv;‘. v e ,5Q o 11 .1 j
3.1.2 Tinnahenko's Modified, Acceleration Method._. . } ='. L l - i
3.l-3 Nevmark's Linear and Parabolic Acceleration Nethcds.‘} . 16 1 i
3.0.h Nowmerk's B-Methode. . . v o v+ . o+ e aa o |
5.2 Methods of Finite Differences - - 4 :
321 LeVY'E MBLHOR. ¢+ v b v v v e v e ek e B

3,2,2 Salvadori's Method © v « « ¢« v v v b o e e 0 b . B

3.2.3 Houbolt'e Mathed . . . . . . v v + v v « v+ « s . « s 4 s 30
3.3 Numerical Sclution of Differeutlal Equations

2.%4.1 Euler's and Modified Buler Method. . . . +« « « + » . . . 32

3. %.2 Runge, Heun and Kutta's Third Order dule . « . . + . . . 4

%.3.3 Kutta's Pourth Order Rules . . ... v -cvve v v v v v 0 . 36




IV, DISTUBBIOR

b1 Aceursey . . . . . .

CONTENTS (Conciuded)

b.2 Propagation of Errore. . . . . . . . D e

4.3 3tadility and Convergence. . . . . . o . .+ .

b4 Procédqres of Operationls + « - o v v 4 4 ¢ W

V. - CONCLUSIONS . . . . . .

APPERDIX 1. KNOMENCLATUKE .
'APPENDIX 2, BIBLIOGRAPEY .
_AFFERDD 3. FIGUR®S. . . .

v:mai ¢ v LI | v ’ e ¢ |V ‘

AP M G W i i 6 et ¥ - ——— e

S AT g L A Bk By, . o L

i1,

B i
———
e——

AP A AT Al et




19.
20.
21.

22.

 Tamoshenko'sy Moditied Method (or Nevmark's Method for £ = 1/& Errov in
Amplizude. _ :

. Linear Accélera,ion Method (or Newmark's Method for B = 1/6): Dieplaceiént in

Linear Auceleration Metbod (or Hewmark's Method for B = 1/6): Error im Period:

. Newmarit's Methcd for B = 1/12 and Salvadori's Method: Error in auplitude.

. Heubolt's Method - Displacemeut in First Cycle due to y, = p. Free Vibra-

ga.

iil. i

LIST OF FIGURES

Ccrotant Acceleration Method: Displacement in the First Cycle due to §, = L.
Free Vitration. NRo Damping.

eTiod.
Constant Acceleration dethod: Error in Amplitude. | , , -i

Timoshenko's Hbdified Method (or Newmark's Method for B = l/h): Displacement
in First Tycle due to y = p. Free Vibraticd. Ro Damping. o 1{

Timoshenko's Mnn.fied Me'chod (or Newmark's Method for B = 1/4): Errer in
Period ‘ ‘ : o ‘ T

the Firat Cycle due to §, = p. Free Vibration. Ko Damping.

Linear Acceleration Method (or Newmark 3 Methcd for B = 1/8): Error in
m.itude. 7 ’ '

Farabolic Acceieration Method: Displacément in the First Cycle due to ¥, = 1.
Free Vibration. Nc Damping. : S

Parabolic Acteleration Method: Errer in Period.

Paratolic Acceler#tion‘Method: Error in Auplitude.

Newmark's B-Method: Magnifica;ion Factor for Velccity.

levy's Methed (or Newmaik‘a Method for B = 0): Error‘in_Period.
Levy's Method (or Newmark's Method for @ = 0): Error in Amplitude.

Newmark's Method for B = 1/1Z and Salvadori's Methed: Error in Periocd.

tion. N¢ Damping.

Houbolt's Method: Error in Period.
Houbolt 'y Method: Error in Amplitude.
Evler's Method: Error in Perilod.

Euler's Method: T rror in Amplitude.




iv.

LIST OF FIGURES (Concluded)

Modified Euvler Methed. Error in Perled.

Megirien Ruler Metnsd, Ervor in Amplitude.

Runge, Heun and Kutta's Thisd Order Rule: Error in Period.
Runge, Héu; and Kutté'a‘Third Order Rule: Error irc Amplitude.
Kutta's Tourth Order Method: Error in Pericd. »
kutta‘a Foufth‘Order Method: Error ir Amplitude.

Values of Aq/A at Any Stage for Various Values of Ag/A et pt o= 1.

Criteria for Critical Damping,

s R A A




- ACKNOWLEDGEMENT

7 Thia 1nvestigation has been pert of & reaearch progran in the Civil
gineering Department at’ +hs Univeroity of Illinois, sponaored by the Mzchanics 
%i t :‘-nran»h of the Office of Naval Reaearch, Department of tne Tavy, under contract
H6ori 71, Iaak order VI. The authors wish to thank Di, L. E. Goodman, Research B
' leAseociate1Proressor of Civil Engineering for ais inatructive criticisus and
suggestions. Their thanks are also due Dr. T. P. Tung, Research Assistant
_E?bfessor bf Civil'zngineering} vhose suggéstions end comments helped very mnch

toward the completion of this work.

Gt s IR - e e e L 1 VB B n g e L e e e . et et e —

e ccabibtonsd.




L] Satan SAS gagll ol

R i L A

e —————— ————— T T 7.

e

SYNOPSIS

A comparetive study of step-ty-step methods which are commonly used in
the rnumerical analysie of the dynamiz response of structurés is presented. The
method of snalysis 1s barsed on the generalvtheofy cf the calculus of difference
equaticns gndbtbe algebra’of matrices.. The availablelsﬁep-by-step techniques
discussed are cla~sified into three groups:

l;'— czeleration ﬁefhdds,

2. Difference equation methods,

3. Numerical soluticns of differential equations.

' Gomparisons heve been made between the availsble technigues with respect to the

accuracy of a single step, propagaticn of errovs after a length of time, limita-

“tions imposéd by instability.gnd lack of convergence, time consuwptlon, and self-

checking provisions of the procedures. The purpose of the work has been to

determine the range of 2pplicability of the various techniques.
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COMPARISON QF 3I1EP-RBY-STEP METRODS FCR ANALYZING THE
DYNAMIC RESPONSE OF STRUCTURES

I. INTRODUCTION

1.1 Summar

| This dissertation 1is concérned with the analysis;of step-by-step methods
commonly used in nuwerical eoiutions of the dynamic respomse of structures.
Rigorous éolutioga are not always possible for structures with non-linear charac-.
"eeristicé under dyuamic loads such as wind, lmpact, blast, earthquake or vibratory :
mofions,"particu;arly_in the.case qf'muﬁiwdegreefof—freedqm systome with plastic
resistante’of~with a varying_elaétic behavior as & function of time. Consequently
§>numericalfapproach is indispensable—fof éuch conditions andrstePQby‘etep studles
"of motion with respect to time are-éxtremely useful.

‘The purpose Qf'this dissertation is to study the accuracy and range bf
applicability of vafious step-by-step technigues now availablg and frequently
uged iﬁ-pfoblems of dynamic response of structures. These step-by-step procedﬁres
mey ée claédified for convenienca of discussicn into th:ee groups. 1. Accelera=-
tion methods; 2. Difference equatidn methods; and 3. Numeriéal solution of 1
diffarential equations. In the acceleration methcds the displacement and velociﬁy
ut the ond of a time interval are each expressed in terms of the displacement and
veloclty at the bveginning of the time interval, together with the esccelerations

which occur at the ends of tie interval, a law of variaticn of the acceleration

within this time interval being assumed. The acceleration is in turn governed
by the differential equation of motion and the problem may thep be solved by an
algebraic solution of simultaneous equetione or by cut-and-try iteratlcns.

The eecond group of methods involves the application of finite differ-

ence egquations which are ohtained from the given differential equations of motion.

— - —— - s e 2 s o e e s e . e——————
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Displacement ay eecn‘sncceesive step during the mctiorn can be:dorived from_tne
Vdisplacements previously obtained by means of flnite difference equations. For
multi-degree-of-freedom structures the solution may be,eCcomplished by solving .
8 set of lirear simultaneous equations or by inverting a matrix. -

The third group of methoda includes conventional devices developeo by

:{»5~,mathematicisns for the numerical solution of various differentiel equations snd

: vhich are quite general in application. They may be adopted even in more compl* T

cated problems than those involvad in the eque ion of moiion which we uaualiy

": encounter.l,p:-~i | - ) | .
The analyse +he characteristics of eaoh of the available techniques 1t ;f:;'f -efa‘

' ﬁis best to obtain beforehand an algebraic equation representing esch of the va.ious__:

.“7ﬁf:techniques of step.by-step procedures, then,torcompare 1'>v1th the rigorous solu- ;:{55.i
A*fjtion of the differential equation of motion end investigate its propagation of

f{ ,errors. This can be done in one of the fo1lowing ways. First, it is possible to T"

"iﬁexpress the approximste solution in the form o a finite difrerence equation in

. tsrms of displacemen+s snd find its complementary and particular solutions by meens,'f~5

‘ 5f;of the caJrulus of finite difference., e the approximate procedure is readily

I . given in e finite difference form, no work is necessary in transforming the

original procedure into finite difference equations.‘ Secondly, the set of lineer ;;'~f

| equetions used in the approximate technique mey also he expressed in a mstrlx

}!form suvh thet a column matrix coneieting of displecement, velociiy ard accelere-
ticn at the end of the time interval is equal to the product of a square metrig
into a column matrix consisting of displacement, velocity and auceleration at the
beginning of the time interval. When the procoduse 1is successively carried out
n times, the square matrix aultiplies itself to the anth power and shows the re-
lation between the initisl and final conditions. The former way 1s more siuple
as far as mathewatics is concerned but reveals directly the dynamic response only

in displacement, while the latter, though involving more algebra, gives not only




the displacement, but velocity and acceleration ag well 1if desired.

Vr'The dynamic analysis of a structure is usually bassd on the following
1 assumptions: |

1. The mass of the structure mey be represented by & number of separate ]

T E N TROTEOEEA T S Tu e T T T T T T e

e concentrated meseee supported by a flexible ‘and weightless f*amework. 'i;': IR {
- N Ths resistsnce-defleotian reletionship of the structure can be deter-':"
. minhd beforehend over ths whole renge of action, and- the time history of displsﬂe-f;gvf

e ment or external forces is known.‘

Without loss of generalization, fhe present analysis hss been confined to,_"

e T - A 2 T o
f'f a single degree-of-freedom system. Nevertheless the motion of mors complicsted
/' l

j'?'m f'flg multi degree-of-freedom systems can be considered as Leing msde up of “the motion

o - e . B L . " § -
:~*-j_;jf-in several modes, each mcde acting ss e‘single-degree-of-freedom. 3'?(_?7;7; o ,::jré
’ Lol . o Y . \ ; St

Generslly speaking, accuracv mey be etteined if the time _nterval is o

SIS ) ‘

‘;'sufficiently smsll while tco large on intervel msy produce very mislesding results." &

;i,,:u'HeweVer, since different degreee of eccurscy can result from different methods of !;
:1'3spplicetion, the choice of time intervel depends upon the accurscy desired and the;?;i;
. smcunt of work required.} ”‘ 7 ' ' .i ::— ' “‘ _ T 5 |

Accsleretion methods need no spscial training fcr their application sinve ?}t
.they sre besed on. fundamentsl concepts, bue these metheds sre slweys handicapped |
rgby the- criteris of couvergence end stebility.‘ The rcnstsnt scceleration mefhod\l)*‘l
© 18 obJectionable becsuse of its repid divergence of amplitude Timeshenko's
modified scce-erstion method(l) gives better results than that of constant accel- |
eration, yetrthe frequency error ie'stiil sppreciebie. It is, however, free froﬁ
¢ stebiiity difficulties and has no enlarging or diminishing effect of the velocity
resbonse. Newmark's linear acceleration method (2) has better agreemeat in
. frequency, but overshoots a little in amplitude due to the enlarged velocity

response. Newmark's parabolic acceleration method(2) has even better agreement

* Numbers in pareniheues refer to items in the Bibliography.

P——



in frequency, but unfortunately its amplitude diverges exponentially, and it is

theretere of less vaiue for a long lapse'of time in spite of 1ts accuracy in the

\ _first cycle of vibratlon. Newmark's p-method(3)(h) may be regarded ac a genera-
' 11zed acceleration method, introducing a row parameter B in the displacement

e equation 80 as to control the effect of acceleration. With B=1/b, it 1s'identicel BB

| wi*h'Tinosheuko‘s modified‘nethod.' Withdjeﬁl/S »it iartﬁe same as the linear - r”,”“;;

1i?;;4¥; artelnrafiun nethod 4 It corresponds to th: diffbrenLE equation method adopted by |

: I.evv(f‘) uhen /en 0, end to that given by Salvadﬂri(é) when ,a.. 1/12 ‘f‘he grea,t : L

' advantage of fbis generalization is that it p?tmits a ouuveniﬂnt choioe of the _f_f f’;fg g

'fr time inferval determined by the convergence criterion during the opevation.:?

Uifferen(~ equation " thode also ha?e Cri+er1a for stability.= Theee

;:proceduree are not self-rhecking._ A littlo mbre timp e"onomy may be gained singe v

fonlv tho displacementxis necessary for the computation and the velocity may “P

disreaarded iu eath step tnus saving time in calculations. As stated beiore the

if:,f.:; differenve equations adopted by Levy and Salvadori may be considered Y identiﬂal

.y

to Nemrk e - ﬁ-method when ,@s 0 and ,8= l/l¢. respectiVely, except that the

inifial .rnditions are treated difrerently Houbolt '8 mothod(T) is eai& +o be an- ;va‘f“

1mprovement nVAr L‘Vy 8 method, aince it employs e ~ubic curve of diapleaement for J ?
the difference equation, yet it euffera from ihe converging characterrstit of the |
ampljtude end frnm a 1arge erro* in pariod. The computed amplitude of an undamped
syafem as computed bv thie method will decay rabidly aftei a few cyclea of vibra- -
“tion rven when 8 emall time interval is uned,, ”
7 :.Tbe eccuracy ofptbe numerical solutions of differential equetiOne ’
¢ . developed by Euler, Runge and Kdtta-(a)(9) is discussed in many bocke and papers.

| The application of these methode to linear vibration problems is somevhat time-
R consuning in comparison with the methods above menticned particulsrly in multi-
degree-ct'-freedom systems. Runge-Kutta's method has an sdvantage for general

appiicability in that it 1s always stable and it has the proper criterjon for

. -



 parsmeters. Additionasl discussion of these factors is presented in le{terrchapters.

critical demping in viscous damping conditions.
Comparisons of tvué amplitude and period with 'pseudo' or computed ampli- ;_‘ 

tude and period in each method of numerical solution are made to inveﬁtigate the

F S B

effects of length of time interval, natural frequency of the structure and other
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II. GENERAL METHODS OF ANALYSIS

2.1 Calculus of Finite Difference Eguations

Analysis msy be made for each method by expressing the siven differentiel
equation of motion, cOmbined with the procedure of operetion, into a difference
equation Then the properties of this difference equation represent the,eharecteri

istics of the corres?onding numerical mﬂ*bod;_ ih thereeeondvgroup of eva‘lable

. techniques described in the lest chapfer, finife difference equations are reedily f' i"

vformed from the differential equation of motion by replacing *he higher ordere of ERE

: derivatiVes by central difference patterna - In the first end third groups of
ueveildbie techniquee more algebraic work 1g required to convert the equatione of

motion into a difference equetion Hoauver, ‘the . equetions of operation prescrib-

‘ing the given metioa can elweye be - expreBSed in terme of displacemente and velovi~f 1‘

tleo in & linear reletion, ﬂﬂd can easily be put in 8 difierence equation form."f~

_'In acceleration methode nhe equationa of operation may at first contain some
Tacceleration terms but one can soon eliminete then eince the finel ecro]eration
ieself cen be expressed in_terme of dieplacemeet, velocity end inipiai;acceleref :
‘tlon. Qhusiif the equation of motion is giveniiorehe form R ‘ | |
J+2rpy + Py = F(t) | © (2.1.1)

where p 1s the naturai frequency ¢f vibration and r thercoefficient of viscous
danping in terms of p, 1t is poaeible to represent the numerical procedure by a
fiaite eifference'equation in the form

@ e + GaYn + BsYn = B F(ly,)+ B F ()t b FG)) (2.1.2)
or, in the case of the parabolic scceleratior method or Houbolt's method,

& Yar * “a,Vn ¥ Qi yn * Qg Yn.2
= B F( L)t b Ft)# b E(ty. )¢ by F ) (2.1.3)

i r

£aond
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Tha solutions of these dirferance equations are
Yoz 5x"r X (2.1.4)
and =X+ x|+ Xy (2.1.5)
respectively, where X1, Xp, and x3 are the roots of the equation

2, %2+ QeX + M = 0O

—~
mn
(4

~—

or . axie Qxlt x +tae =0 | (2.1.7)
eorresponding to Eee; (2.1.2) and (2.1, )), and ¢y, ce, and c3 are ccnstants |
rdntermined from the initial conditions, ' |
- If -the rocts xy &nd xg are condugate complex roots, the, reeponse of the
pumericel procedure is periodicvalthougn there may exiet errors in both amplitude
' aed'freQuency. One the other hand when all ‘the x roote are real, the solution .
¥becomes aperiodic and unstable.v By 'etable we mean that the response of the 5
";‘eumerieel aolution emains pericdic and without fluctuation or rapid divergence in

emplifude. As far as time period {8 concerned, tne observation of these roota

serves thereforn .as a criterion of stability.' Divergence of amplitude may aleo bera-"
o regarded as. kind of instability and it will be shcwn in later rhepters that it is -

due o the preeence of " a factor with an exponential power of time which ocvure in o

;lr the generel equetion of response. ;If *he factor equele ene, the emplitude will
~neither diverge nor converge and is therefore stabie.’ When the facter-isrlarger“

than one, the amplitude diyerges.with a rate which depends?on the magnitude of;the

factor. BSlow divergence is generally acceptaele in some problems, 1t is deterhiﬁed

by the allowable error 1n_amplitude and not by the criterion of stability. -

 Particular solutions of these difference'equationc may be obtained by the

calculus of finite differences though sometimes this uay involve difficulties in
more compliceted forcing functions. However, an approximation can generally de
made by expressing the forcing function in a power series or a Fourier expansion
which is always solvable in this kind of finite difference equations.

The finite difference equations (2.1.2) and (2.1.3) consist entirely of

T U A
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displacement terme and therefcre the general solution shovws ornly the response in
displacexent of the struc;ufe at the end of the time interval due to the displace-
ment and velccity at the beginning of the time interval and aleo due t{o the exterir
forces 1if there are any. In order to bring cut the response in velovity of the
structure, another set of difference equation containing all velocity terms must

be formed from the fundamental equétidns of the numerical solution, such &s
“/.yfm + ‘_’P.‘/ﬂ *.f?:yn-/ = b/‘/'_(tl’ﬂ)*blf\/chl\* b,yF(fﬂ-/) (251'8)
OF A a1 * Yt Gt Yp. * By Yren = §F(Tag) v baF(E)4 by F(tr)s B Fbn.s) .(2_1_9)

Simi a”lj, the fini*e difference equat4uns may also sontain only accelera-:

tion terms in the form of , .
0»,)9,, + a;yﬂ # 03)’0.; = b,/-'(&,,,)+b,F('t‘,)+ b,/-'(r,,.,) o (2.2.10)
Qg A+ Q*)’f-/* “wf"-z = é‘(‘w*h’"( by F(tr.)s bf(f»-z) (2.1, 11)

if +he response in:accéleration is required.

A1l ﬁhe'xesults of numerica} solutions are henceforth to be compsred witn

 the exact éblﬁtiou. In the preeent analysie Lthe motion of 8 strvcture which 1g
' ubsumed to be of elastlic behavior is prescribed by the well-known differnntxa’

~equation (2.1.1, whose general solulion 1s known to te

J= 9-"”(4 ccin/i-rt pl + 8:;54//- ripl)+ Ve (2.1.12)

where ;} is the particular solution, and A and B are constants determined from ther
initial conditicns.,
For free vibration, F(t) = 0, §p = 0, and the equation of motiun becomas
Jr2rey Py =0 (2.1.13)

The solution is

)/ s @ ff/)é w/_—,_}/'\f* Tij/”q// f? Pt) \:2.1..114')
and "- e"/’ ()/a wv,-,zpf‘ ?L—. ,.//-/"/a(') (2.1.15)
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Tozr free vibration without damping, the eguation of moticn can further be

simplified to
S+ Py
and its sclutlon is
e Yo cos pt + %"—:f»,af
and 7= Js caspt = py, sinpt

2.2 Algebra of Mairices

P o
O

1,16

(2.1.17) ~

(2.1.18)

This is app;icab;é to the first and third groups of metnods provided that

the displacement; veloqityjadd acceleration at the end of any time intérval~can he

expressed,infa linear fore in terms of the displacement, velocity, acceleraticn

and some other’pAJametgrs at the beginning of the time interval. For exemple, -

WEEL o= Ay f GpYe t iy, + Ak

YR AU Yt Qs Yy + Rpy Yy + Qs

Ve Ay * G Yo * An Yo A .

(2.2.1)

e matrix form represénting these linear éimultauecus equations can e written as

)‘3} v ay | Qg @y Cu Jo
).’, Ay O 22 Qe | )"o
w ! = - ) .t
Y Ry QAn Qs au || Y,
{ 0 0 14 oL/

form,

(] [AlDn].

(2.2.2)
; or, in more abbreviated

(2.2.3)

When the numerical solution is carried through n successive steps of equal time

duration, with the final displacement function of a previous time interval be-

coming the ivitial condition of & new time ipterval, the matrix [AJ operates on

itsslf o times, so that

[n] = [A]" (%]

(2.2.4)
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The matrix [A]n can be expanded by means of the Cayley-Eamilton theorem and
Sylvester's thecrem as scon as the characteristic roots are cbtaired.

The cnaracteristic rcots of the matrix [A] not only gives the expansion
of [A}n; hut. alan determinas the ariterian nf avahdlity syactly ae in the fini+a
differcnce methed described 1in tie preceding artic;e. ‘The presence of a pair of
conJjugate complex characteris-ic roots signifies stability and pericdic response

of the numerical goluiion while all real roots indicate that the regponse 1ec a-

pericdic.

The method mey become very tadibﬁs in the case of forced vibrationé since
tre preéence of more thgn two characteristic roots in the‘matrix w111 add too mich o}
algebraic work to the simplifica:ioﬁ prdcess _The method of analysis by finite

differgnce_equationa ia preferrable in this case.
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I1I. ANALYSIS OF AVAILABLE TECHNIQUES 5

ey

3,1 Acceleration Methcds ;

3,1.1 Constant Acceleration Method

The busic assumption of this methed is that the acceleraticn of the mass

ir moticn remains unchanged throughout & small time interval and is equal in

directidn and megnitude ;o'fhe acceleration at the starting_pcinf of tﬁe concerne

.‘ing time interval. The assuﬁpticﬁ‘igxaV:Cugh one, aﬁd prcvidés a.rﬂpid_but-in.
'gqcu:;te rrocedure. The error invthis-méthod is o large that it is seldom uaed.rl
 A'éligﬁ; modification and a little morg work‘impiove the results éonsiderably. B

The advéntage of speed ofvopergtion cénnot'doﬁpansaieVforffhe loss tﬁ éccuracy.' o 11F1

let us cdnside: first a singlé mass in free vidraiion without damping.

Then frow elementary mgchaniés we ohtain the fdllowing expressions::

)%é/ = Jyh g 5érbv, | . L ' (5.lfl.l)
ot = Yn # ();4 + yﬁa/)"g‘ \ ' | : }1
Bt b e N (3.1.1.2) B

where h denctes the time interval.

Row the differential_equation of motion for a body ia free vibration

without damping is

JH+py =0 ’ (2.1.16)
from which tke relation |
[ f
Yn = =P (3.1.1 3) |
is cbtained. Substituting in Eqs. (3.1.1.1) and (3.1.1.2), we get
Yot = = Pl + I (3.1.1.4)
PRy s b5
and Y = (1= B )y + by, (3.1.1.5)

From these relations of displacement und velocity, one gets a finite difference
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equation in terms of displacements correcponding to the computed results from the

censtant acceleration mathod.

341 2
, ..2(/_ »‘i—"-)y,, +(/+ %/’—))’m/ =0 (3.1.1.6)

The solution of this fiunite difference equation, together with Eg.
(3.1.1.8), yields the general equation for the displacement predicted by the

approximﬁtegsblution;

o M= (’*"‘é“‘)ﬁ(%‘“ﬂ“* (3.1.1.7)
. "where ) ﬂ' m&”'M /_é (}.1.1.8)

Comparing this with Eq. (2.1.17) of the exact eolu*ion, it 1s cbvious that wheﬁ‘
the time interval hAig very small, this approximate method approaches the exact
solutiou’as & limit. Since the time interval is qpt';e:o, there. is an‘efror‘in
the proceduré. We splii the resﬁlting error into tﬁo pérts,'one {8 the error in '
rrequency or period, the other ia in amplitude. The phaee angle n should ba .
egual to pt if the: solution_ip exgqt. In other -words, tle exact value ¢f u

should be pt/n or ph, Hence we obtain 8 relationship between the pseudo period

'of the numarical solution and the true period of the exact solution, i.e.

h _
-;’- = ‘:—: » - (3219

fhe frequency has an errcr of % percent for th= 0.5 édd of 10 percent for ph =
1.0,

The error in amplitude is objectionably large since the computed dise
placement is eubjected to a magnifying factor (/+ /"-’:,ﬁ"-a)f wkich diverges
rapidly with the number of steps of operations n. This source of error is dominant

although there also sxist scme other errors in the ccelficients of y, and yo

The coefficient of y, becomes (H- 3—);//'27;'7;7727” n,u-) instead of 1 L
& (14 2f)
P

instead of 1/p, which also shows a rapid divergence of awplitufe. Fig. 1l

and varies as a function of n and ph. 7The coefficient of y, becomes

- — - —— Ve B me er e at e kA memem - e — e  ————

— T TIT AT A D
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lllustrates the rapid divergence of the envelope of amplitude for a single woving
mass aubject to y =0 and YooP.
The criterion of stability shows that ph should be less then 4  Any
_value o1 ph greater than & ylelds aperiodic respcnse of displacement and valocity.
Ne critefion of convergence exists for this method since one operation is
sufficient for each step since no repatition or trial. necesssry.
For free vidbration with viscous damping, the analysis is more complicated
,eince it invelves one more parameter r, the damping factor of the mor*on The
d*‘ference equation now beromes
Saws = 2(1- 2 PW))G* (’-’P/’/(’* “;‘?).Vn-/ =0 - (31.1.10)
and its soliticn is o
y- ”’P/’)f(/*#ﬁ[} )Gf ﬁ-),t z’( ’,’)9 f’fyé] S
/ £-¥r-E8 (3.1.1.11) ¢
here | "Z"' Lph -, o /"éé EA&
W © /“sm.w;pé (/-ff/?/‘(’* M) me/-ffﬁ)[/'f‘ﬁv—
The ratic of- pseudo pericd to true period becomes

é!ieﬁ?ff:f , (5,1,1,12)‘

Comparison of smplitudes mRy be made from Eqs. (3 1.1.11) and @.5L.1k) | Figs. 2

S i e i

- and 3 shows the comparisons of period snd amplitude for different demping factor
r. |
 Two kinde of comparison in amplitude are made for all tecnnijues des-

cribed in this thesis. The first one deals with the =Tagnitude of the envelope

of vibration at pt a 1, regardless of the magnifylcg effect of the sine term in
the general expression. In cther words, thls is a comparison of the exponautial
factor which multiplies the solution. The purpose of this comparison 1s to
demonstrate the rate of divergeuce or coavergence and then to Judge its apprlica-
bility. This ratio varies exponentially with pt, and therefore the amplitude

ratio at any Iinstant of tize may be found Yy its zxponential relation with the
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ratio at pt = 1

Another comparison deals with the peak amplitudes in the f£irst cysle of
vibraticn due to an initial velocity 90 = p. The first pcak amplitude occurs &t
n = n /2 thearerically  hut {F may deviate from the true wvalvne in nomericsl el
tions due to the errcr In period which therefore plays an important role in tuc
pseudo paék ampiiﬁudes. This xini of comparisoﬁ may give & beiter picture both of
the actual oscilletory zotion and of the psnudn motion derived from the approxi-
mate-techniqtes. | '

~Thé eriterion for stability of the constant'acceleratioﬁ methcd.is
expressed by the fo;lowing equation B

p’é’ 12 1ph - k(=% F)=o . - . (3aaas)
‘ 7""‘hie shows that .hen ﬁé > (4m - 5") , the‘c_cmputed displq'cemsnt of
mot;o“ is aperiodic which I8 not true for r less than’l; For the crivical: aamp-
ing ﬁﬁﬁdifion, 1.6, r ; 1, bﬁ should be maie‘équaiito or greater than 0.9282 in’
.order to pro;ure an aperiodic respdnse.

Tre cdnstant'aéceleratfon method is to§ crude in accuracy“and therafore
not much used in practice; It is orly accufsce to the second order of h and erroms

ma& arise from the third power of ‘the time intervel since

Y= (l-- P—;'j")}/, + (f—fpé)ﬁ)% ' (3.1.1.24)

3.1.2 Tlmoshanko's Modifted Acceleration Method

Tris is an imcroved method obtalned from the last one by modifying the
acceleration of the moving body. The acceleration here is aasumed conatent
throughout the tiwe interval and equal to the average of fos initial and final

values. The ~lementary ecquutions of motion are trevefore

St S Sa ? v );n.w)fr (3 1.2.1)

-

2 H ==
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Yori = St E (vt o) = syt Yo bt ot e nas A (3.1.2.2)

It should be noted that the above equations may not be consistent. When comtired
with the differential equatlon of free vibration without demping, these equatinms

yleld F/’
» (/v‘ ))’n&/ = "'/72”)/” * (/' /f” (3.1.2.%)

2 |
(i '24"))/"*’ = (- 22"))7' + by, (3 1.2.4)
The difforence equé*ion in terms of displacement now becomes

Yer - (z--ﬁ—é’-?)vﬂ + Yoo = (3.1.2.5)

and its soiution is-

A= S Cosnpe # -{-:mn/«. | S | (3.1.2.6)
where = - ob - Pglé‘ | '
' = QC S *J£-131* = 2re el T LET
AT & (3 2.2.7)

Similarly it can also be shown that’

j,,‘;- y, ca:z;;u. -:py., Sin M | | , ‘ (5.1.28)’

This . approxmue solution has no error 5n ampl tudns neither the initial

displacement nor the initial velocity produces errors which would affect the

magnitude of displacement or velocity thereafter computed. (See Fig; L) The

only error arising in this method ls due to the difference of phase-angles or
hg discrepancy in pe;iod or frequency which can be expressed by the equation
7

P (3.3.2.9)
and 18 plotted in Fig. &,

Another advantage of this method is that no criterion for stability need
he lwposed. The length of the time interval can be chosen corresponding to the
accuracy desired. Unfortunately, the error in reriod is so large that even a
time interval of sLecut 1/6 of vhe natural pericd will result an 8 percent error
in frequency.

Iff viscous ammping is ccusidered, one can cbtain the following equations

=

I

AL

-
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cf moticn, o DY) s
(rophs BE) = = Pl # (1= 1ph= ) (3.1.2.20)
¥ p 52 y
{1+ rph + "’zé)/m = (r+rph- F_;Q//)/,, * hh (3.1.2 11)

and the difference egquation of diarlacemen<

(- - o fm (g O

with its eclution ‘
/=7 ’ (3.1.2.13)
Ces U + S
/wph/’g At /"’ ”/“) |

w:ere s Ao /fi= #3 F‘ ! ‘ |
- = e /ﬁrto'/:‘ /*” ) "P%' RO

The cr1terion_of7§tability may be expressed as: /-f“;> o . This

 9xpress1n£ is 1ﬂd\pendenf of the natural frequency and time. interval, i.e. there

ls no value of ph which affecta.the stability—of response . The stabilitv criterion .

+1s 1dentiual with the criterion of critical damping. _ ,
By comparing Eq (3. 1 2 13) with the exact sclution, Eq (2.1.14), one -
can observe that Loth periud and amplitude ervors exist in the approximateisoiu~

tion. The ratics of pseudo to actual values of pericds aﬁd amplitudes are as

follows: '
E . Lhotl- 1
7 wagh%% (2.2 2.18)
(,_g_,) _ (/~r/.vﬁ+ Iy \Z‘o‘ﬁ. o
A /at phat 14 rph 4 P / (3.1.2 16)

Curveg are plotted for these equations in Figs 5 and 6.

%.1.3 Newsmark's lLinear end Paraboi.lc Acceleration Methods

Tnece metheods are tased on the assumption that the variatlon of the

acceleration of the mass in motion is, respectively, linear or parabolic. The

iy ]t Y
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velocity 1s determined from a definite integral of acceleration over the range of
time, and the displacement is, in turn, an integral of the velocity. The elemsn-
tary equations of motion are therefore consistent.

The linear acceleration method is first considerad Thz equations ¢f

motion are L 5 o
Joer ® Yo ¥ 45 * F I | (3.1.3.1)
. 2a ‘u !
and P VIEESVARY R X' +7;)'m. ©(3.1.3.2)
In case of free vibraticn without damping, ).’. w—pty . The

equatione can be simplified to the form

(/*f—é') o = ("2}-/}5 * f’)’n | . 7' . (3.1.3.3)

.(N ))ﬁuhﬁ"/’("%‘/ﬁ*(’“’a‘/’/% ;o Gas)

from which the difference equaticn

S = (3-74%'22’)4.* rey = O B L : (5.1.3.5)

is derived The xolution of this differ ne: equat on is

=S Wﬂ/b P/"’W S/ﬁf'r/a o ', o (3.71.5.6)

ifneré A= “ﬂﬂ /e P ' a&“: /.. P‘A‘ R o (j.lj.?).,
. - /. = - g’zl

Similerly, ), = - yop. /- A2 ~.S‘mfy4 + Ji s n o (3.1.3.8)

Makipng comparisons wlth the,exact'aclution as before, the error in the
aprroximate sclutlon comeists of two parts: '£ﬁe error in period and the error in

arplitude. The error in period is expressed by the ratie
7s ph

T aresm A= (3.1.5.9)
+* T

The ampiitude error in this case is constant for a given time interval, it dces

not vary with the lapse of time snd iz sclely a function of the initiasl veloclity

of the mess If the mass starts from rest no smplitude errur will occur  Hence

the amplitude error depends on the proporticn of initial displacement and velocity.
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The error will be large for a motion due to & small initisl dieplacement and large
initial velocity; ani will be small for a motion due to & small initial velocity.
Fig. 7 shows the response of a single mass due %o y_ = 7, and ?o = p.
The criterion of stability is found to be ph<:4/I§. Any value of ph
greater than A/IE will result in aperiodic response by the approximate solution.
In the case of free vibration with damping,.the difference equatior of

the procedure becomes

(/"‘ z )54'/ | (2 ‘2';5?_ ht (/ _Ezg.)xr-/ = (3.2:3 "'b)

e e s

‘The solutton is

W= m_ﬁ" (X"”"’*,\/ ,-?%’L "”W‘) (3-.1-3@1)7'

- P

Vhe?e M = arein M" el = st cos e |
| (v #£ /‘-r,p‘/;' f;-/-[m/’:‘g-ﬁ/—fja%? © o (3.2.3.2)

The criterion for stability is now

/- #E- 75‘ = 0 . for ={1 o (3.1.3 13)
| Charactgristice of . the pscudo period and pseudo'amplitude are shpwn on
Figs. 8 and 9. | |
| The paraboli¢ acceleration method ‘differs ffom the above method in Rssul
ing that the a:celeration has a parabolic variation; thus )szy,, + /<,/; f/é,/)' .
Tha procndure of operation 1s gimilar %o the linear acceleraticn method excert
that one mecre inlitisl condition is required to start with., That 1s, ons needs
two previously Xnown steps tu carry out a new step. The procedure may be started
an one of the folluwing ways:
1. Usze linear acceleration for the stariing interval.
2 Use lirnear acceleration for a starting interval which 1s only half
a8 long as the regular interval, then gct a special parabollc acceleration in-

terval hel? as long as the regular iaterval and proceed.
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5.
The equations of motion from elementary mechanics are
Yo B Yn t /%(—y,_, + 8y t Syn) (3.2.3 1k)
. b 2 o4 AL e
S B Yt Y +;%(—_M,.,f/0yﬁ.,+3)4;) (3.1.3.15)
and the diffcrontiol sgusticn of an ~ooillatary motisn withous damping ‘”.}“#;t

The difference equaticn corresponding to the above equa*ions is

(*P'/")),m (béﬁ%)ﬁﬁ.f(ﬁﬁp% s %‘/5 e (3.0..%.16)

The solution of this equation csn be expressed in the form of Eg. {(2.1.5) walch

can also be written es

Xv.'?-'AF""‘ R’(aw.m/d% Ck/'ﬁ@u); o oo C(3.1.3.27)

vhere A, B and C are conatants éetermined f*om initial conditiohs,‘p, Rfaﬁd u are

7 fan.tione of ph. The value of p- is amal. and terms containing it are of less ime

-portance than other terms of the expresaion.' R is demidant since_it is greater

than l'and of exponential power n as steps of tiﬁe proceed, "Therefore;'*heinro-

'cedure ig of a diverge.t nature and is not desirable over 4 long lapse of time

Furthermore, the criterion of atability ph <: }57758 limito the applicability of
long time intervals, Although the parabolic acceleration nethod s mbfe aécurate
than the lineaf cne ap faxr a8 the fifét cycle of oscillation:ia concerned, tie |
arrors in amplitude enlarge rapidly from the second cycle onward. (sée Fig 'lO )

Figs. 1l and 12 show how T /T end AS/A vary with ph,’ neg;ecting the first term of

‘Eq. (3.1.3.17).

An attempt has been made to improve the accuracy of the llrear accelera-
tion method and to lessen the work of cowmputation of the parebollc acceleration
method by applying linear and parebolic rcceleratioris alternately in succesnive
sters, 1.e,, using linear mseceleration in the first step, parabolic in the gecond,
linear in the third, parabolic in the fourth, and so on. The result, as one pay
expect, turns ocut to be intermedlate between the two wethods. The differesnce

equation for the displacements at an even number of steps in the case of free

R T
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vibratioca with no damping is writtsn as

2l }%P]A'*é‘-b%? AT Ll /"/7‘+2 P ota b . |
b (1 B+ 2E) Sir (1 )T BEF £6-)T 0 (3 1.2.18)

and its 3olutiom is "
Son = R cosop ¢ weze 7296/:'/9‘+/é96,0‘/7‘-97,0‘/" sin o (5.1.3.19)
ere 4 = arcsi oh, /9216 ~ 12565+ 1636 LAY - 37 p%*
vhers M " P A) R30as T3k ph 1 388 PR 565KV 3O
= @rccos —memm8( 20~ 4 P24 SP%Y) e (3.1.3.20)
’ 2304 + /3 44 pihis 388 p%%s 54 p% 5+ 3P ¢ eV
: ~ ,\/2304 » (384 PYhes 368 p‘ﬁ+:go‘/ﬂ+ 3p88 -
and | E = (5 *P'/"'Xé *Plﬁz) (3.1.3..&:.)

The values of T /T and A /A are plotted againPt ph in Figs. 11 and 12.

It is evideut that the propasat*on of error is divergent. The criterion of étébi-;

1ity of this al‘ernate linear-@arabolic acceleration ‘method for free vibration
without damping 1s found to ve ph = 1,6171 which is quite uhfavorable for lopg

time intervals.

3.1.4 Newmark's B-Method

This is a generalization of first degree acceleration methods obtained by

introducing a parametér B into the elementary equations of kinematics. Thus

Yrr = Sn b f Yot g Shu (3.1.5.1)
Yot = Yo+ b+ (F-B)yab" + g Jn P* (3.1.4.2)

It is obvicus here <that this is e2guivalent to Timoshenko's modified
methed when B = 1/k and to Newmark's linear acceleration method wuenm § = 1/6,

In the case of free vidbration without damping, the difference ejquation

of displacements appeurs as

. 143
Sner = (’2--,‘;%9%.7; Do+ Ve = 0. (3 1.4.3)

T S A e Tt AT\ - e e ——— e v A s -
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The general solution of the difference equatlon becomes

s e Lo ! |
InE Yo cosnm + 2 TE PR 171 g
viere g m arpgn LOLELPE e L /(f':) L (3.1.4.5)

/ P /)n’/:

(3.1.4.4)

By comparing the pseudoc period with the true period, it cén be seen that

the ratic T,/T may be expressed in a series form of

-~
/3

-
7 M
Consequently, for B a l/l.?,_the ratio TE/T will be closest to unity for aay

arbitrary value of ph. This means that'ﬁla 1/12 »will_ give the best result in’ :

‘period.

Tre zomputed amplitude is meither Givergent nor coziverger;t as time pro-

 gresses, although some errbr is involved ir the response to an initial _vglc_city.j |

B Eq.’ (3.1.4.4) enova that the. term containing Yo does not .contain any error in

/
a.mplitude, but the one with ¥y, 1s amplified by the factor M,_ (i’ ,g),a‘/r’

whic_h is - only dependent on,ﬂ snd ph and s free from influence of the proceed:.ng

. time. Fig. 1% {llustrates the variation of the velocity amplification factor

o\/- (f ,3)}9‘/,' :  with ph for differant values of -
The ¢riterion f;,r stability is '

e
~/_—L7—1‘,6P" i 4 (3.1.4.7)
When B » 1/4, this condition 1s always fulfilled for any value of ph ard therefore
no stadility criterion need be imposed. With f3> l/h, Lo ph can possibly .atisfy
the criterion. With p{ /4, the laerger B, the longer the time interval which can
be used. For f = 0, the critical rh ies equal to 2.

The critericn for couvergence 1s

ph < #,@ (3.1.4.8)

which shows that a larger B8 permits a smaller appliceble time interval., For 8 = 0

= #5128 pHt- sha (r2opt-teop s IT)PHH=n (3RS

iy
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the procedure immediately converges regardliesa of the time Interval uced.
¥For probleme ol free vibration with viscous demping, the difference equa-

tion of the prccedure may be writicn ss

o oormb Y . T <
Gy G 1eAEEs ot (1= T3gFFE) e = 0 (3.1.4.9)

Its solution is

ghgg_'ﬁ “f/—ﬁ‘ﬂ A 4ﬁ)f7=‘ff]
'y(/up/w,@p‘h ()’ ’“* -

vwhere .y ,tu(%fﬂéingt
X /‘L m.sw/?ﬂ (/1‘/3/0%72 fjb'ﬁ‘

._ f'*ﬁf'ﬁ)" 'P/’ - (3.1.4,11)

Now the error in period ia not ouly dependent on B end ph, but. aleo 0L I

-_Again, iz the ratio T /T is exnressed 1n & series form as:

.E_ ) A—gﬁ /=
_ (1BB=1)~ ¢(£,e+/)ﬂ+ar-'

S e N L) /5’/43,‘..... (3.1.4.12)

it will be found that B = (/4- $r? ~ gf‘)//z (/- 2/2) ' | ,(}.lkk'.lj)'

is the best value us far us perlced 1e concerned .

The error in amplitude is dominated ty the ezponential factor multip;ying

- the whole expression in Eq. (}.l{h.lO) particularly after a long sequence of tire.

Neglecting the coetficients which combirpe with y, and 90 in the expressicn, cne

zay compare amplitudes by taking'the ratioc

A r , ”"P’I’* Lgfl/,l :';07 .
{?{)\u‘pr:/ = € /4-,?,6 ’“ﬁ}’%' (3.1.h.14;
For best agreement in amplituge, /3 = -_-§£ .

The criterion for stability is
4 (/=/3
PAt ,é 4{5) (3.1.% 15)

for r{1. Except when B = l/lt, the numerical procedure deoes npt present an ggrees

ment on the criterion of c¢ritical damplng, greater discrepancy usually occwrs for

/-f" ,8),0‘/7" /‘) (3.1.4. 10)‘
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larger time Intervals. Q;itical damping may cccur lu- the numerical procedure even
for low values of r 1if tco long & time interval ls taken.

The criterion for coanvergence is
reh + gPth? </ (3.1.4.16)
There is one more restrictiocn of this methed in the viscous dazping pro-

blem. A degererate case of the difference equation will ceccur if'jf;i%;jgt"

is equel'to +l or 1. Under this condition the method is not workable. EHowever,
_h__
- It ARt
’ - /1 = o2 obhd
Lo f/bﬁf'ﬁplf = /*‘/glpé '
ve Beo that the convergence critericn 18 violated On the other hand, when -

/f

the spring censtant is negative.

4whenv, /

The a-method'is also appli cable to forced vibrations as repreeented by
Fq. {2.1.1) with good accurecy. The error due to the presence of a forcing 7
function F(t)'mey heveeen by compariscn with the exact particular solution.v Ndw,
let yb be the partieular solution of the given differential equation of motion,
®q. {2. 1 1), and let Yo Ye the correepcnding solution cbtnined by the nuperical
procedure. Analysie 1s made for an undamped system of single mess subject to an
applied force .'{t) as follows:

Given the equation of notion

Jr Py = F(t) (5.1.4.27)
tbe exact seclution is \ )

T = (e-spdesspt ¢ L5 sipt + 7 (3,1.5.18)
wherrz §p i.s the particular solution.

The correspouding difference equation when uaing ithe f-methed ls found

e hor= (2 AL )/ﬂ St = ﬂpip['r/f/m (2"“)"'(5)* ;(5,.4)/

R (3.1.4.19)

e wo——
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aad lts soluticn is
. Jn = A cesnu s Bumnu + )b (3.1.k.2¢)
| whers Yp is the particular scluticn of the difference equatica aud
| b (A - (4-8) P43
* = Qrekin ma
M Ty 7/ it /+,e,a
A= - o

R W" o4[F(t) ,ay,;%[r(r) At L%J{» -»J }

Comparing Eqe. (3.1.4.18) and (5 1.k, 20) ‘we see that when h-+0, if yp-v Svp, the
- pumerical solutiona 'Vill approach the exact soluticn. The fglléiing"comp_ariqons .
’ ara made for different kind of rorcing functions:

. o (&) The forcing function is ‘& polynomial in time, i.e,

F(t‘): Re + d,f*_‘nt'* dﬂ”+ Tt ‘ : (3.1.&.21)

- ~ then e {[‘,'_2.4_4,* 4-3-:~4 g,_ 6:'4;{2;/ ds, ‘ ]
_ '+[a 324, ggpza,; 76::):‘32474__]’:
( !_304+ 6543 2 _@76;}?*43 a.... ]t: A
,D
+(a! ._ﬁ!!:,,, 25.-9'_‘1_.7.' - 587 Péri‘i dy, .. ]cl

--.--_-----) ) © (3.1.b.22)

L L 2lhay, 432 bm_ §:5:4:3.2:/ K , ...
)/p - {[a’ /ali"x+ P fo g ]
[a, ;2&@;+5¢.fpz‘har _/é5432% ]f
_ 434dq 6-543&0_ 5‘7'4543 Kids,.. .t
* [a, e 4 it # ]L‘

¢+ T

[4- £ kas, 7554&« 9.87% 54/0 Jﬁ (3.1.4.23)
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where k/“ /
r.=~ It i (18 -1 )p%h"
= i+ F(Iep- 1) PR 5ez(360p%-Gop+ | )p%*
koo i+ # ligg- )P s (eegtacge ) m@’fafwﬁ’ Sorcphamp iyt

ke = 1+ 4124 )P4 55 (40408114084 P, 1=l (oo’ 392408 764 -
* m&3/4400ﬂ‘—604500fﬁ J'ZQ?o,a'-zaao/s +1)p%h’

From the above we see that the numericel solution is exact for a third

degree polynémial at any velue of B8, and for a fifth degres polymemial when B =

1/12. | |
A (v) The forcing func‘.'.:!on 18 trigonometric, i.6, . ' A
F(t} A:mat' + & “-fbf‘ o ' L (30l
then  Jp = P_,—-,.ynai‘+ —,ﬁz-.- ces bt S (3.1.4.25)
. A S al . 8 cospt 7
aod /e PN X7 Talb * or- 2smtbh - 3 L 26)
(1+ cos ah=2/sin*ah )h* (1heosbh - z,asm'bﬁ)h‘

(e) ' Exponentisl forcing functions, ag

Flt)= a® - - (2.1.4.27)

(%.1.4.28)

and » = 2 Fo2ghs] ‘ (3.1.4.29)
s (f-2)ar e 1] |

In all cases above, when h = 0, Yp §'p, and therefore the numerical solu=-
tion approaches the exact soluticn ss a limit.

The B-zethod way also te applied to other form of motion than the one re-
rresented by Eq. (2.1.1). Consider the motion prescribed by the liuear differen=

tisl equation

y-y=t (3.1.4.30)
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the exact solution of which is known to be
Jo=cet-(t+1) "' (3.1.4.31)

where ¢ is a constant determined from the initial ccndltiens. Applying the B-

rehlem, one finde the difference

[/r?ﬂb) [?+2( 280+ ( 4@)/:_‘])/,,., ﬁwi[z,f 4] tn., i)

;l)

uation of ddasulrcement ta ha

snd its general solution is

= c(/ﬂw-—?—%ﬂ;—) -(Z‘+/) |  (3.1.4.33)

The best value of B for this case ia 1/6.

5.2 Methods Of Finite Differences

¥.2.1 Levy's Method

A method proposed by Levy replaces the second derivative y, in the equa-

‘tion of motion by finite differences, jér(:Wnu - Ry ¢ )@41) . 'For a free

vibration with pno damping prescrided by the given differentisl squation

St plyee | , (2.1'.-'16)’
- by substituting ,}"ﬂ " #()';M -2y )’n-/) ; one obtaina |
Yner = (2= ptht)ym + Srer @0 (3.2.1.1)

which I8 obviously identical with Heﬁnarx's generalized acceleration method for B=0,
excépt that the treatment of initial velocity is different. The general solution
of Eq. (3.2 1) 1s

Yo = Acasnu v BSm nu (3.2.1.2)

whera M= aresin PA@ = mm(’_ _E;i’)

apd A o2nd B are constants determined from initial conditions, with ph £ 2 as

(2.2.1.3)

statility criterion. There is no difficulty in finding A which is always equal

to y.. hut troutle arises in the determinaticn o B walch depends on the

- T L o ———————— — . . e e
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interpretation of the initial velocity, or in other words, on the way ia which y;
1s obtaiged froz the krown values of y, and Yo+ When y, = O, one may assume that

Y, = ¥Y.i: then solve simultaneously with Eq. (3.2.1.1) to get y,. Othervise, if

T e Ty
D Ciom  ieer

~ _ - [P o —
& e
sV BT, UT @

Y. %OV, Slwe JLLET

- If ome be‘gine with Nemrk's B-method of B = O for the first ctep in order

" to obtain Yy then

%= (" -l )x. +h% o : (3.2.1.1)

ard the result will te the same as Newmark's fS-methed for g = C, i.e.,

&= &7/- P? o ' | (5.2.1.5)

If taking the formula of elementary mechanics _
onm Nt C(3.2.1.6)
we obtain 3 & 4 %é'y,

=7===7°’7f‘ IR (s.2.0.7)
/- "F SRR | |

The result is, of course, less accurate. -

On taking )’f = Yot ;X; : for the first half time interval

~ and getting y; from the difference equation of the Balf time interval

(2- )20, we o'ota :
PRI e G . By s
I : ‘ °| '
8= T (3.2.1.8)
Trhis result iz generslly better tnan that of Eq. (3.2.1.7).

On assuming y_. = O and solving for ¥y

- A
3 = MF&%_ ' (31201-9)
A /- . /= 'oééa})’a
This is only true when o= W—- ; and 1s only used when y,
/- F

is uncertain.

In viscous damping problems, by replacing 5’:1 by ,—-_,f;(y,;,, - )"ﬁ-z) and

7
¥y, by /"zi ( o1 = 8y + ).’1-/) in the diffecrential equation of motiom,
)'/' + 2/,p)} + Py = o, (2.1.13)

one may ohtein the difference egustion

(1% 195 ) oy, = (2= p%3)yy + (1=185) o = 0 (3.2.1.10)

4 vt e — e I L e
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whick i¢ tdential tc EqQ. {3.1.4.9) for B » 0. The result will be the same as that
of Newvmack u generalized acceleration method for B = O with exception of. the treat~
went ot initial velocity The discussion is therefore not repeated here.

Four cumpsrison of pseudo and true periods and amplitudes ¢f this method,

see Figs. 14 and 15.

%.2.2 SHalvadori's Methed

This ia:én application of & procedure due to’Fox vibration preblems. The
sccond derivative ¥ is replaced by the first two terms of the central differeance

expansion,

whers:: A’ and A‘ fa.:;e ft;h'e'.éecozid'and fourth centra) differences of y
7 At B Y - 2)n + .‘,v}’ﬂ-l ;
| A‘yn’ = }’"1 - 4 ynr * Ofn ~ & * o2
- Qpefatihg then with (/+ j%:) on each term of the equation
g+ Py |
Drcpping thé sixth-différence terms; the equation may be simplified to

243 :
N 'T(_Z - ﬂaé’?)ya *i =0 (3.2.2.2)

whbick is obviocusly the same as Newmark's generalized acceleration methecd for
p= 1/i2. (S22 Eq. (3.1.h.3).) The solution is in the form
o= Acesnp + Bd'/'nfw (3.2.2.3)

where . oh S Y /- = th?
M= are sm f/ p /‘Z;z}i‘r -——:Zg,-r'

= dre 5 T p

I e (3.2.2.h4)
The conctants A and B are determined from the initial ccnditions. For free vibrae
tlons, A is always equal to y,, while B depends on the way in which y; is obtained
from the initlal velocity yg.

1 the prosedure is started with Newmerk's B-methed for B = 1/12 until yy

Wis

i
Uit o tr O | Loy

o , o - ' o -
 ),’=7,£3(4" '/%’).Y o o L (3.2.2.1)
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is vbtained, that is if

g 'F'#’[(”'%P’/’")X ’ /'-’;‘] ) (3.2.2.5)
the result will be the'sane as *hat given by Newmark's B-method for B = 1/12.
7‘_/_7__;&? | (3.2.2.6]
If ve take the formula of eslementary mackbanics

%= Yot by (3.2.2.7)
(1+ PM'}‘% ¢ P/'y.

then & = —ﬁ— . | - | (5-2~,2~8)>

which involvas maze orrox than the previous resuls. Howé?e:y-tha hécdricy af the

: velocity responsa can be improved if the initial valocity is properly treated.
‘In the case of forced vibrations with & forning runction F(t), the

difference equution of Salvadori's mathod beoomas

ﬁ’--%)x*}'m W{F(&.Jﬁof'f&h F(t,.,)} | '(3§2-2.95

vhich 18 a.gain the same as Revwk's nethod for f = 1/12. (Bee Eq. 5 1 4,19).)
This method is accurete to the ordar of 17 provided that the movion starts from
- rest, If the motion begiua with a finite velocity, the treatment of the initial

velocity for the difference equation determines the accurecy. The discussion of -

this method is included iz Newmark's method in provious and latsr chapters, and
is not restated here. o
Salvadori treats the damped moticn problem in the same way &8 levy does

by transforming the damped motion aquation into an algebraic equation by the
substitution of central averaged differences for the derivatives. The difference
equation thus formed is

(19405 ) oo = (2P s # (1= 1PA) Your = © (3.2.2.10)
which is the same as Fq. (3.2.1.9). Thers is a difference in procedure when
applied to a multi-degres-of-freedom structure but it doee not affect the nature

of the errcrs.

——— - S e S ——— e e e
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3.2.5 Houbolt's Method ~

Houdbolt 's methad is based on the assumption of a cubic curve for the dls-
plucemsnt of the moving bvody, considering that four successive ordinates can be
passed throughk by & cubuc curve. With tuls assumption the following differencs

equations for the final derivative wmay be cbtained.

Yo = fil2yy= St 4 ne = o) . (3.2.3.1)
Vo= g5 (10 n = By # S 02 = 2pms) (3.2.3.2)

The deriyativeé at the third of the four ovdinates are sometimes of use.

and are es follows:

Yy = ?;"(}'ﬁ?/ - 2yn % Vv-l)~< N . - (3.2.3.3)
}’Jr = #'(Zyw +3yn = byns * )‘n—:) _ U (3.2.3.4)

‘For free vibration without damping, substitute Eq. (3.2.3.1) into the

differentisl equation of motion

R

”The Pollowing ﬁiffereuce e§uation is obptalrned. ) E
AP )y = Sy * A pa = ey m O . ~ (3.2.3.5)

Tts solusion is.

In ® GX"# Ca X+ G (3.2.3.6)

whére X1y *2: and ¥y are the roots of the equation -

(24 A X = Sx8 9 &% =/ & C | (3.2.5.7)
It car be shown by the theory of equations that this equaticn contains one real
root, and tw> conJjugate complex roots for any value of ph. Therefore the solution
ﬁas always an oscillating nature ard no criterion of stability geverns the cholce
of the %ime interval, although the amplitude may be damped out very rapidly ae
time proceeds (see Fig. 18). Eq. (3.2.3.6) msy also be written in the form

Y B Ae=¥t s e“‘””(s coccpt + C Smept) (3.2.3.8)
where a, %, and ¢ are uall furctions of rh. Here A, B and C sre constencs deter-

mics!l from the initial conditions. The first term of the equation is negligibly
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small while the second term wultiplied by o~OF"

the numerical values of a, b and c for varicus ph, Fig. 19 shows the ratio of
paeudo pericd to true periocd Ta/T’ and Flg. 20 shows the ratic of amplitudes AB/A.
The disadvantages of this zmethod are two-fold. First, it needs one more
initial cendition to start with., Although this can be found by taking account of
the initial acceleration it also involves effort to trace the hack differences
in:luding the simultaneous solution of equefions Eqs. {%.2.3.1) to (3.2:3.4). If
the ;hitial'conditions are awkwardly treated, e.g. by making tha kesumptioe that
the fietitioue displacements &t t = ~h and t = ~2h are zero,rthe error introduced
by these errcneous assumptions would be greater than that of the method itself.
' Tﬁe step-by-step evaluation of succeeding displacements cannot proceed in e
et*aightforward manner until three initial dieplacements have been established
spcondly, the amplitude of a elightly damped system decreaeee so rapidly even fcr
& time- interval of ebout oue-sixth of the naeural period, tbat the amplitude 1g
redured 50 percent after one and one-haif cyclus of vitration. (See’ Fig.‘l&,)
Finer time intervals end»thue more computatlonel effort must be used to reduce
the dampiné effect of the procedure.

For free vibration with viscous damping,. the difference equation of this

" method becomes

(24 40k 2 Py - (54 4fP’$)yn-/ # (44 3r0h a1 Frh b3 =0 (3.2.5.9)
The solution is in the form of Eq. (3.2.3.8) with a, b, and ¢ functions

of r and ph. The criterion for stability becomes

4(1-13)-28r(1-1Eph v (27-48P4 SErAH s 4r(0-5r0% 4 j2rio%* > 0 (3.2.3.10)
Values of a, b and ¢ are listed in Table 3.2.3.1 for various ph. The ratics of
T;/T and AE/A are also plotted againet ph in Figs. 19 and 20. It can be szeen
that the errcr in pericd increms2s with time interval h and the damping factor r.
The smpiftude ratio is less thau 1 for systems with slight damping and greater

tman 1 for system with higher damping factor r.

1s dominant. Table (3.2.3.1) lists
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Table 3.2.3.1 -~ Values of 8, b and ¢ of Eg.(3.2.3.8).

EE_ 8 b _.c
ra0 0.5 1.5587 0.0318 0.9208
1.0 0.9024 0.0681 0.6016
1.5 0.6724 0.1461 0 .€9ko
2.0 T0.8Ugk  0.173% T 0.6047
2.5 0.k706  0.1868 0.5%25
‘ . » 3.0 0.k1kg  0,1922 0.47L0
v = 0.25 0.5 1.4176 0.207k .0.8808
1.0 0.8185 0.1963 C.7357
: : 1.5 0.6108 0.1959 C.6213
o 2.0 - 0.L§87 T 0.1941 0.5350
L 2.5 0.kg62 0.188z . 0.4637
- 3.0 0.37WE 0.1820 0.4165
r= (.50 0.5 - 1.2436 0.3766 0.8312
‘ _ 1.0 ~0.730k  0.2787 .0.6836
1.5 0.5528 . 0.2371 0.5694
2.0 0.45L7 - 0.2122 0.4871
2.5 0.3900 0.1942 0.4258
-~ 3.0 0.3435 0.1799 0.5785
r = 0. 6.5 1.0018 0.5638 - 0.7848
B - 1.0 0.6349 0.3544 - 0.6439
1.5 0.4960- - 0.2739 - 0.5307
2.0 0.4lh2 0.2302 0.4519
2.5 - 0,358k 0.2019 = 0.3945
3.0 0.317% 0.1815 0.3507

5.5 Numerical Sclution of Differential Equations

%.3,1 Euler's and Modified Euler Method

Euler's approximation is based on ithe sssumption that if y 1s expressed
as a function of ¥ by the equaticn 7& Fix.y) , the increment :Ln y corre=
sponding to an increment, A x, in x is given approximately by the equation
Ay = f(%, y)ax , the value of £(x,y) beinz that at the beginning of
the interval Ax. Applied to the problem of free vibration, with damping,
governed by the differential ejuation y + 2rpy+ Py = O, the formulae for new
displacenent and velocity at end of & time interval are found to be

Y= gt Al (2.3.1.1)
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and 0= (1-2r0h) Yo - Phye (3.3.1.2)
When this procedure is carried on in a step-by-step manner, usiryg the displacement

and velocity found frcm the previous time interval as the initial condition of the

T

new time interval, the diflerence eguatlion Lacome

Yoor = 2(1- 0y # (1= 200kt P*hY)yny = 0 f (3.3.1.3)

The solution of this equation is .

b A
Yo = A”’.()'mw*fjryﬁ;t——,?—-ff"'%) o Gaak

wh ' , ‘ , .
‘ ere R = \//..2,’9/, +F‘,(,z o | (3.3.1 5)

,
- ‘ -t .
i = arccas /L

and M= aresin (3.3.1.6)
The error is of ths second order and the amplitude démps out gradually

wilh tiwe. There is no limiting criterion for stability in case of free vidration

“with no damping. ‘Any time Jnterval will cbtain oscillatory recponse. For free

vibratlons with damping, the criterion for critical demping is the seme in the
numeriéal sélution 8s in exact solution, i1.e. aperiodic ﬁotion at_criticél démping
orcux's wheﬁ re 1, | | | '

Figs? 21 and 22 show the errors in periﬁd end amplitude at pt = 1 for”f
varicus ph. |

-The modified mﬁthod of Euler takes the true average value Qf ﬁy/dx oﬁer
en interval instead of dy/dx at the beginning of the interval for the equation
% = f(x, )’) . This mwethed gives a more aczurate value of the increment of
y due to incremsat of x than Euler's original method and the error is of third

order of (4 x)5. This method may be represented by the formula
L / #
Ay = £(a% &%) (3.3.1.7)

where A= A( X, yo )X
& = f(Xsax, Yorby)ox

When applied to the prcblem of free vibration with damping, tke displacement snd

Tl st
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velocity at the end cf an interval now become
148 ,
, = (1= %_ﬁ)y,, + (1= fpﬁ)ﬁy, (3.5.1.8)
Yoo = [1= 200k = (§-20)p"ht] s + (=1 # 0h) PP yn (3.3.1.9)

¥

This procedure may be represented by the difference equation

You= 2[itph= ($-rYph f[/'?f,o/’*?f'ﬁ"ﬁ"fﬂ"’*#‘"‘]m =0 (3.5.1.10)

the solution of which is found to be ,

Yo = R7( Y cosrpu + ﬁ-sfﬁ r;/u)

| (3.3.1.11)
where R = f-?rp?r-rzr'p’b'n-f,o-’/?f-é-/"ﬁf (3.3.1.12)
p = aresin LEQBINI=1 o oy g Lot0h= (B0 0P s

“Again, there is no limiﬁing criteriocn for stabllity in the case of free
vibration without damping, but the amplitude of vibration seems to d.a.mp out
gradually if the range is carried too far. In damped vibration preblems, the
pumerical method has the same critericn for critical damping aé the &xact solutinn;
| Figs. 23 and 2k show the errors in pericd and auplitude for various ph

gf this method.

5.3.2. Runge, Heun and Xutta's Third Order Rule

Various formulas have been devised for rumerical integration of the
o
diffarential equation 7% = f(:";)’) by Runge, Heun and Kutta. These methods,
accurate to the third order of A x, are summarized as fullows:

1. Runget!s Original Formula:

ay = a%4 j{é‘(éﬁ‘ 4%)- 4””} (5.3.2.1)
where A’ = f(x' y)ax

A%z f(x+4x, y+a') ox

&% =2 £(x+ax, ym”)-ax

]Z(x.t Zax, y+Fa )4
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2. Heun:
ay = £( 4/"34”) (5.3.2.2)
where 4= f(x')//‘ﬂx
‘ A¥=m £/¥+*QX_ V#‘&‘é’)'éx
J A ? VAR
&%=z f(x+ §ax, yr§ar)ax
3. Kutte'ss Third Order Rule:
by = f(a-8a"s 87) o (3.3.2.3)
vhere A= f('?f,)’)‘dx |
A¥ e f(wﬁ-az, y+¥a)ax

A%n f(x-ﬁ Ax, y+24%-4") Ax

All these formuias when aepplied to free vibratious with or without camp- -

ing yield the same results. When applied to forced vvibra.tions, their resulis have
alight discrepancias but all contain errors of the fourt ordsr. It is hard to

say which c:f the above formulas is best because the agreenent with the exact golu-

tion d.epends on the type of forcing function, damping coefficient and time intez'val'

in a Very complicated mannser.

- Considering the free vibration problem with damwping, the follvwing

discussion is common t0 all three of the methods above mentioned.

" The displascement and velocity at end of a time interval are found. to be

J=(1=3PH ' PRy + [1-rph- E(1-4rY)p* ] hy, (3.3.2.4)
Yim=[l-rphe$-artph Py, *["?’P"‘f(’""')ﬁ""*f’ﬁ'z"yf%:& (x.3.2.5)

'I'he‘se equavions, if appiiled successively by using the final valua of previous

step as the initial value cf the new step, lead to the difference equation
S = [2-21ph- (1200 4 £ (3-81Yp% | 1
*[1=zroh # 20 - §rioth'- i(1-8r P £ P4 % P45, =

(3.3.2.6)
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The solution of this eguation is ,
I e”[xmryq*:%-.%»}u) (3.3.2.7)

VRO R =\ /I-2rph # 2rpVR - § PR =810 £ i ,q,.
“n arc s ph[I=rph - §(1-ar)p%/1-11] (5.3.2.8)
e arceas LotBh - #l-2rp%t+ £3-4rip

(3.3.2.9)
As before, these methodr have no limiting criteria of time interval for

- stability in problems of free vibration without daxping, mor thers is any dis-

crepancy in the damping coefficient r at the point of critical damping.

5.3.3 }l!utu's rourfh Order Rules
,m.,romlu with error of order (A:n:)5 derived by Kutta ave:
71, Xutta'‘s Biﬁpson's Rule ‘ ,
4)’ = #(a*207+ 247+ &™) o o (3.3.3.1)
thre ‘ f (x,,/,) ax | | |
‘s f(xtEexn, ot ) A’) Aax
‘A". f (Xs$ax, Yo+ $2°) 4x
A™a f{zw-ax, Jo# A”) rAX
2. Kutta's Three-elghthRule
Ay g(a'+ 38"+ 32"+ ") (3.3.3.2)
vhere A’z £(% /) ax '
2% )‘(!'o‘*f"'f S ? ja’)-,ax
& f(ntdan, yita®-Fa’) ox
A7s Flry+ax, Yo+ 22"+ 8" ) ax
o difference in results between these 4wo rules occure when applled to

free vibration problems. For forced vibrations the results will differ slightly

but both are of the same order of error. Tne agreement with the exact solution
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varies with r, ph and ¢.
The displacement and veiocity at end of a time interval in the problem
ef free vibration with demping are found by either of the two rules Lo be
Y. = f/ fﬁ%’ajfﬂ‘/)’sﬁ—"-//mdr’ ‘/)%‘7 Ve
i rphe s £ (12085 (3:5.3.5)
y = [-1+1ph + F0-4r0)p%3- £ (1-202)2°° ] p% i
t [/..Efpfy - 4 (1= ar)p¥ete B (1-20%)p %0y EL( /zrifbr);‘/]); (3.3.3.4)

Tois may be put in difference eguation form for the step-by~-step methcd, as follows

o =[2-21ph (20 (3878 1 (1= 8P4 8 R,
¥ [1m2iphs 2= $ri'h e §rp%0 K (1-4r %S
7“(/-6ﬂ)p‘/>‘ %o+ Fg pY% _]y,., -0 (3.3.3.5)

The solution is found to be . '
Y, ¢ , i
, ” - e"(.y' C&J‘H/M * 7)’_’—4_5/”,}“) v (5.3‘3_6) »

whers [/- zrpﬁ ¢ 2rip¥r - §riothdy §flp4p
| HA (et 7%("5")”‘/" o5 0ph e g P4 (3.5.3.7)
po = dresin LALLIBE fi-wwuﬂf-wwum (333

= aress Lot8ho#L '2")9%'%@:4"20’6‘# & (-8resrlp®

(5.3.3.0)
Like all other methods of this Xind, the fourth order rules have mo
limiting criteria for stability. Any time interval can be used according to the
accuracy desired. When the system reaches 1its critical demping, i.e., r = 1, the
numerical soluticn becomes apericdic. A difficulty associated with the method is
that the amplitude will gradually damp itself out even in the case ¢f an undamped

system, and the methcd 1s theref'ore not desirable for & long period of time,
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IV. DISCUSSICN

L.1 Accuracy

It is usnally convenient to compare tne accuracy of various methods Dy
the order of time inmterval h involved in the arror produced. The final diaplacej
zent over a time range computed by numeiical zmethods can be expanded intc &
polynomial of ph &nd then compared term by term with a standard power series
'erived from the exact soluticn, The error occurring in each step of ‘the etep-byv
'step method may thus be okaerved, especially as to the order of ph involved.

: Gonsidéring first the caée of free vibration, with damping, which is governed by
the differential equétion _ , A _ ) '

Jr 2tpytply mo - (2.1.3)

ité solution

J = 6"”“()6 casn/l- "P** q§==é—"ﬂ«//-f‘ﬂf) C (2.1.b)

“may be expressed in a powar geries for a time interval h

Yoo % [1- $P R FPR (1=t 5 (12 ]

# y,/r[/-rpb-j(/—&’),a%‘q‘(/-zrw/”’* o (=12 lor8)pttsened (11 0

The following is a collection of equations which show the accuracy of .
difrerent numerical methcds:

Constant aaceleration method:

o= [imgoW ] + [1- 0] by, (3.1.1.13)

Newmark's B-method:
Yoo = [1-$P 240000 488 e
P E(48r"pr- 457 R G4 pr 4P g )P
# [ 1-1phs (44r4 8 )P #(rl8 - 208) p'K (4.1.2)
+ (4r%-20% - 4rig*s f*) ot - Ty

- -— A A g e A — o P ——— £ m—— i m mp——
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For £ = 1/4 (Timoshenko's modified method.)
Yor @ [1- $ P41 § Ph*- o Ty # [/-rpé-j-(r-4r‘)p%'+-~-]éy;, (4.1.3)

For B = 1/6 (Linear accesleratiou methcd.)

oot = [1- 3P PN G i-art)eht e - ] :
# (1= 1ok = % (1-artfphts Y (2-rijpths . ] 4y (.1.4) ]

For B = 1/12 (Salvadori's method.)

= [1- s E R (e P s

¢ [i=rph=(1- 4r1)pth14 . < Ty, (4.1.5) ;
For B =.0 (Levy's method.) A o . A
Yiw = [1=2ph1] y 4 (1= 0h [hy, (4.1.6)

Parabolic acceleration method: _ '
PR [~ fﬁ%'*lcfw*#(’"")ﬁ‘ ‘773 ,,(3‘63-/32#);’44& I .
’ [/-rp.‘v t-ar )P v £(- z:?p’é’-f(/—/ér‘f%f’)p‘é‘ Jﬁx, (5.1.7)
Houbolt 8 method.

Yoot = (1= $¥00 £+ ph(i- 4")P‘79‘+-- ]

+[1-r0h - F(1-ar)pht+ £(-2 2r2)pihe - by, (k.2.8) :
Euler's method: = j
i = gn % By | (3.3.1.1)
Modified Euler Methed: |
w2 (1= ﬁ)% v (- rpﬁ,,/y,, | (3.3.1.6) ‘
Runge, Heun And Kutta's third order rule:
oo = (1= EWYs £y v [1= 1ph § (=8P ] ), (5.3.2.4)

Kutta's method:
Sros = (1 §phie f ¥ g (1-ar)pht ] o
t [1-rph - $(-arp¥s F 200 | Ay, (5.3.3.3)

From the above listings of equations for varlous methcds, one may cbserve
that:

1. The constact acceleration, linsar acceleration and parabnlic accel-
eraticn methods have, respectively, an accuracy of the order of h?, b.5 and hl+ lo

both displacement and velocity. The accuracy of iewmark's B8-method depsnds on
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the choice of B.

2. Levv's and Houbolt's methods have, respectively, an accuracy of the
order of h2 and h3 in both displacement and velocity responses.

'3. Salvadori's methed 1s of order n° only in cisplacement response and
only for undamped systems. If r and ?o are not zero, thi; method is ouly of he
accuracy unless a good interpretation of 90 ir made.

< 4, Buler's mathod is of tﬁe first order; modifled Euler method, second
order; Ruﬁge gnd Heun, third order; and Xutta's Simpson's rule or three-e;ghth
rule, qurth order genersally. ' “ »
.:  5. In some special césea the Qccuracy of the &bove methods may be pro-

noted one more ofder; 'These will be listed in Chapter 5.

Iﬁ fhe case of forced vibrations, the error which enters the particulaf |

eoluﬁion alsc governs the accura;y of the ﬁethod since it determines the constants

for the initial conditicons. As before, ﬁewmark's linear acceleration method is of
third order accuracy for any system with or without damping. For sn undamped

‘ ayateﬁ étarfing at rest, Salvadpfi'g_method has an accuracy of Tifth oidér. Euler’
’modified Euler, Runge-Heun and Kutta's wethods are still of first, cecond, third |
and fourth ordér respactively. ' .‘

o Thé comparison . of errcfa by polynomials ié only geod for ph less than 1,

Lecmuse the error weculd otherwise be dominated by the higher powers of ph which

would vit¢iate the analysis. RNevertheless, usual practice indicates that a large
time interval, éay from l/h to 1/2 of the natural period of vibration (phsl.5708
to 3.14.16) is highly desirable in rapid and rough estimations. The effect of

large tin~ intervals is shown in the graphs f Appendixz 3.

i+.2 Propagation of Errors

The preczding article concerns the accuracy of displacement response of

varicus methods in one single step of cperatlon, the error indlcated in the

a s ———
———

~
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expanded polyacmisl being compared with a common initiml condition., Dut if steps
by-step evaluations ars set up, with a common initial nondition for the first atep,
the initiel counditlon of the second step willi cantain error which ls different in
vardious methode  Aftor a chain of steps {4 rompletad; the error propagates in
different ways, divergent or cénvergent, accurulating or self-eliminating, as a
function of time, ;ength of tize lnterval, natural frequency and damping factor,

shown in pravious chapters are the equations for y, and in Appendix 3
‘are graphs of Tg/T and Ay/k for various methods. These may serve for &n estimate
of the pr§pagationfof errors.

nrrore are of ¢wo fundamantal typea, error in period and error in ampli.
tude. The error in preriocd or in frequency ie solely due to the discrepancy in
phaee angle which is dtrectly proporticnal te the lapse of time. The error in
umplitude, on the o+her hand, chiefly depending on the factor R® in tbe equationa
of Ypi is an exponential function of time. From the equationé for yn derived and
listed in Chapter 3, it is evident that the conditipn for'no error in period is
ph = u Bnd that for no divergent error in amplitudé 1g ReTPR . 1, Ali pseudo
periﬁda end pseudo amplitudes have been compared with true periocds and true arplia

tudes iu the preceding chapter. The ratio.of periocds is given by the relation
T _  Lhai=rY
T ad

and the amplitudes by AB/Aa There are two ways of comparing the amplitudes. The

' (.2.1)

first one concerns the ordinate of the envelope whiéh prescribes the periodic
response, while the second wvay takes account of the peak amplitude in the first
cycle of vibration, subJject +¢ a certein tuitial velccity.

In the first way of compariscn, cne £inds that

”
s o K
A e (k.2.2)
neglecting the magnifying effect ¢f initlal veloclty in esome cases.

Since the ratio of amplizudes is =ot constant with time, it is reasonable

o et ——r —
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sponse depends on ph as sfated in Art. 3 1.4, and esometimes on the initial

‘rasponse is of a constant nature, doing much less harm than the axponential

Kutta's methods, have convergent_aqplitude aithough-the rapidity of divergence or

La.

LRt /*l

)

to compare the methods at & certain designated time, say, at t = 1/p, 1.e. pt = 1. ﬁ
Then R
(B, = R7 e (4.2.3)
Note that the ratio.Aa/A at ot=1l here deces nct mean the compariscn made ]
wilk lhe pseudo amplitude actually computed which is not only affected by the

facter R, dbut also ususelly by the change in velocity response. The velocity re-

displucement as in Eg. (3.1.3.18). However, when the time interval is not close o

to the criterion of stability, this error in azmplitude due to initial veleocity

factor R after a considerable lapse of time, and is not taken into conmsideration.
Tﬁerefore the ratio'AB/A for the envelcpes of the perlodic curves is stili veeful
for judging the cohversence and divergence of errors.

Newmark's ﬁ-ﬁﬁthoa for all values of B from 0 to i/4, together with
Timoshenko 's modified, Newmark's linear accelerstion, lLevy's and Salvadori's -
wethods, have A,/A = 1 in free vibration of an undemped system. Constant and
parabolic accelaration methbda are the cres yhich have divergeng amplitudes whlle

the others, including Boubolt's; Euler's, modified Euler, Runge's, Heun's and

convergence is different.

The presence of damping may add complication to the analysis. Plottings
of A_/A at pt = 1 shown in Appendix 3 are self-explanatory. The relation betwesn
A,/A at any time and Ag/A 8t pt = 1 is shown iu Fig. 25.

In the second method of comparison, peak amplitudes in the first cycle
of vivration due +to ar initial velocity yo s P a&re compared and shown in Aprendix
3. This corparison muy be of more interest in practical protlems of vivration

siuce 1t gives actual amplitudes of pericdic motion. The magnifying effect on

the sine term of “he gereral equaticn is generally taken inte coneilder:iiion except
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ln the parabolic accelerasticn method and Eoubolt's method where the magnificatiop
factor depends also on the treatment of initial conditions. Note that the magni-
tude of' the pesk ampllitude dces not depend only on the value of R, but alsgo on the
error in pericd as well.

Error in period is, as a rule, constant for & given ph. Generally
spesking, the ratio Ts/T increasss or decreasee with the broadening of time inter-
vgl. Ts/T.> 1 indicatee a larger pseudu period or a reterdation of phase angle

and vice versa.

4.3 gtability and Ccnveggence
The applicabiiity of different available techniqués places gome,limita-
ticns on ﬁhe time 1nter#al used, not only as regards accuracy, but alsc as regards
stability and cbnvergence. All acceleration methods have a limiting criterion 6f
coavergence hecause of their iterative frocédure. All acceleration ﬁathods,
except Timoshenko's medified metnod, also heve a limitiug criterinn of staﬁility
beyond which speriodic response will occur. Thié has been discussedvin A;t. 531.%
(see Eq. (3.1.4.7) and (3.1.4.8).) Larger values of B provide a wider range of
time infervai for stability, but & shorter range for coavergence. On the other
rand, when B -ro, freedonm from{the convergence criterioh is obtained at the lcss
of range for stabillity. The presence of dsmping wili also affect both criteriﬁ;
the greater the damping factor r, the shorter the range of time interva) available.
The differencs equation methods have generally no limiting criterion
for convergence because of the nature of the procedure. However, a criterion for
stability still governs thcse techniques which have been discussed in previous
¢hapters. Levy's and Salvadori's wethods have the same criterion for stabilizy
as that of Rewnmark's B-method when 8 = 0 and B = 1/12 respectively. The
Houbolt method criterion for stablliity has been'given in Eq. (3.2.3.10).

The methods of numerical integraticn descrited in Art. 3.3 have the

Beasaay
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advantage of avoiding limiiing c¢riteria bhoth of stability and convergence. The
choice of time interval may therefore be made according to the accuracy desired,

It 1s not a&dvisable to use2 any time interval greater than l/p, that is, ph > 1,

vtheriviss very micloalding vecults mey be chtained hessuse of tha faet that higher

powers of ph will dominate the solution.
The criterion of critical damping in the exa¢t solution i1s r x 1, while

rcnly some of the numerical solutions have the same critericn. Those which have
proper criterion of critical damping are: Timoshenko's modified method ox Newmarke i

a-mihod for B = 1/4, Fuler's method, modified Euler zethod, aunge?s‘, Heun's and
Kutta's methods, In most of other methods critical damping otcurs even when r@(l. | 'R
The linear acceleration methiod, Salvadori's mﬁthod, levy's method and Newmark's 1
B-ﬁethod (with the exception of £ » 1/4) are all of this group. The eriterion of

the constant écceleration mathod may be higher or lewer than the actual criterion, -

' depending on the product of the natural frequency of the structure and the time

interval used. Houbolt's method generally exhibits periodic response for all

valuéa of r and ph except in some cases when r is gréater than 0.94 and ph very
gmall. Fig. 30 illustrates the criteria of critical damping for various teéhni-
ques: The region above a curve is that of aperiodic responée; wvhile tha regicn 7‘ K

“under a curve is that of periodic response.

k.4 Prozedures of operation |

Acceleration methods require an iterative procedure starting from sa

assuned value of acceleration and arriving at & derived acceleration by use of

the equations of motion until o close agreement is obtained between the assumed
and derived values. With a proper cholce of +ime interval, three of four triale
for each interval of time will usually be sufficlent to reach convergence in s
mvlil-degreg~of -freedom system. The time consumed in completing & step by an

clectric deck computer 1s about nine minutes for a two-degree-of-Ifreedom systew
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and abcut twenty minutes for a five-degree~of-freedom one &after the equations are
set up and & routine form is made. The result of each step ie selfschecking excapt
in the special case of 8 = 0 in Newmark's f-method. Both displacement and velocity
may serve as 8 supplementary help for giving a clearer picture ¢f motien and for
checkiug.

. Difference equation methods are faster because displacements are directly
cﬁtaincd frogvthe difference equations and no extra work tc obiain velccities is

needed. However, they sufter from the absence of self-checking proceduwres unless

an additfonal device is provided. For problems of multi-degres-of «freedom systems,

Houbolt suggested a recurrence-matrix solution in which the equations of motion

are expressed in a recurrence matrix equation and sclved bylinverting the matrix,
Balvadori expressed the equatioms of metion for every three adjacent masses 89
that each equation contains only thxee unknowns and may be sclved by relaxation,
trial and eror, or succeasi#gAapproximations. The evaluation of Aleplecements
with six signiricant'figuree for a‘rive-degree-or-freedom tosk approximatély ten
ﬁinutes after the computations had been standardized-(s)

Runge's and Kutta a methods are the most time-consuming s far 8s the |
use of an electric desk computing machinevis concerned. It tékas more then thirty

minufesrto complete & step by Kutta's fourth order formula for a two-degree-of-

freedom systom. Furthermore, since there is noreelf-checking of cﬁlculations,

nistakes may easily be introduced into the computatiocne due to the intricate work

of cross-substitution in the procedure.
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¥ CONCLUSIONS

The general results of this study are tahulated on the next page (Table
5.1) in which the advantages and disadvantages of each of the available techniques
are listed. (raophs showing the errors in periocd and amplitude for a range cf time
interval from O to about half of the natural periéd in varicus methods are given

at the and of this dissertation., It is therefore possible to chovse a suitable

techniqus for a specific prodlem aceurding to thg accuracy and amount of work ree.

}quiradfb In gensral, the largsr the time interval, the cruder the results. Values
ef ph leas than 1 alvays'give reliable results for all techniquea,lbut variations ' 15 |
o will ba great vwhen php 1, and these graphs may be found useful for Judgement whenv 
using large intervals. | |
. , | I orddnary problems of vibratory motvion, Newmark's p-method is mdst
valuable because of its flexibility in spplication,' The choice of time intﬁrvdl ;
may be made for ﬁhe desired rate of con#ergence and-acéuracy by adjustmant of the
8 - paraaatér. The linear acceleration method, a special case of the B-methed for
B-l/6, is most consistent in degree of error when the motinn is that of forced
vibration with damping, with initial displacement and velocity. Timoshenko's .

nethod is vest applied to an undamped systum when the response in amplitude is

important. The constant acceleration method and Euler's method are not édvisable
cwing to their inacouracy. If the masses in ﬁotion are not damped and have no
initial velocity, Salvadori's method is most rapid and accurate. For rapid and
less accurate work, Levy's method may prove useful, but care should be taXen in

the treatment of initial velocity. Runge and Kutta's methods are noted for their

accuracy and generality in application, heving no restrictione with respect to

stability and convergence, but they are handicrpped by the tedious procedure which

is not generally desiradble for use as en orainary engineering design techuijue.
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Teble 5.1 ~- Summarized Result of Aumlysis '
Order of Accurac !
Item Techniques isplace- Velocity Forced Amplitude ,
No. ment Vitra- when r=0 i
* Response  Response  tion A
1. Constant Acceleration end 2nd divergent
2. Timo. Mod. Accel. 2nd 2nd end ronstant
Newmark B = 1/ (3rd when (3rd when (3rd wher
ra0) ra=l/2) re0)
3. Linear Accsleration 2rd 3rd 3rd conatant
: Newmark B a 1/6 (4th when (4th when
r= 1/2) ra=0) .
"4, Parabnlic Acceleration Lth ktﬁ hthr divefgent
. 5. Newmark's S8-method Depends ou B constant
6. Levy ond 2ad 2nd constant
‘ Newmark B = 0 (3rd when (3rd when (3rd when
ra0) rai/2) r=0)
7. Salvadori end 2nd 2nd constant
- Rewmark B = 1/12 (5th wien (3rd when (5th when
, r=0) r-l/E) r=Q)
8.  Houbolt - Ird ard 3rd _ conv.
: (4th when (4th when
r=l1/2) r=20)
9. Euler. lst . lat lst coav.
: (2nd when
r = Q)
10. Modified Euler 2nd 2nd 2nd conv.
(3v& whnen
ra=0)
1. Runge, Heun Ard 3rd 3rd conv.
(4th when
r=0)
» i
12. Kutte L4th Crder Len Len Lth conv, f
(5th when i
! r=0) ré
E
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Table 5.1 -+ Summarized Result of Analysis. (Concluded)

Ttem  Criteriom of  Critericn of  Selif- — Time

No. Stability Convergence Checks Consump=~
| ing tien
1, Bq. (3.2.1.13) no no less
2. no fﬂ“i’ﬁ”“ </ yes fair
3, Eqg. (3.1.3.13) ;p/wép’é’ﬂ yer fair
b, pr < 3.357T36  PK2.828427  yes more
for rm O forrs 0 : :

5. Eq. (3.1.4.15) Eq. (3.1.4.16) = yes | fai;"
6. PA<‘(’-") no o  less
7. ph<é(i-n) o no ‘leas
8. Eq (3.2.5.10) .. mo : no ~ Tair
9. | ne  mo ‘no less
10, no no no - fair
11.  mo no no  more

12. no no no more

[




APFERDIX 1.

43.

- - NOMENCLATURE

The letter symbols and notations used in this thesis are defined as

follows except otherwise noted.

A a
AB =
A, B, C, a
a, b, C’ L
-} -
b -
h n
k -
n =
he) -
r a
“n -
Ts =
t -
tn =
b 4 -
y -3
k4 ]
¥ -
¥ a
y =

amplitude of the moving mass.

pseudo amplitude obtained by numserical mathoac
ccnstants dgtérmined from initial conditions.
coefficients used in equations. |
2.718.... base of 'matural’ logarithms

forcing functiocn.

time intervaléﬁ

constants.

gumber of time intervals taken in the etep-by-atep evaluation, or
gsubscript to designate displacement function at a pa.rt:.eular tina,

88 Y4y Yp OF yo’ yﬁ

circular frequency of natural vibration.
factor of vieuous daxping in terms of p.

natural period of & general system, in general T = ?x/p.
peseudo pe.iod of vibration obtained by numerical method.
time. |
time corresponding to end‘of nth time interval.

variable in general equaticns.

displacement of mass

Pirst derivative of displacement with respect to time; 1.s. velocity
cf mass.

gecond derivative cf dieplacement with respect to time, i.e. accelera-
tion of maas.

exact aolution of differential equation.

particuler solution of difference equation for numerical mathods.
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APFENDIX 1.
S'p -
B a
W =

20.

- - NOMENCLATURE (Concluded)
axact particulay scluticn of differentlal equation.

coefficient measuring proportion of acceleration at end of interval &n
determination of displacement.

phase angle at énd of the first time interval obtained by numsrical
sclution.
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Magnification Factor for Velocity.
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